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ABSTRACT 
 

     The seismic retrofitting of existing industrial buildings is important for maintaining 
manufacturing facilities in high-seismic zones. Furnishing existing buildings with 
additional moment-resisting steel frameworks can enhance their seismic performance 
while minimizing constraints on the location of production facilities. The cantilever beam 
member in the retrofitting framework can be designed as a locally tapered beam based 
on the physics of a cantilever beam with uniform strength and a reduced beam section. 
This study aimed to investigate the process of designing the geometric dimensions of 
steel members with improved energy dissipating capacity. 
 
 
1. INTRODUCTION 
 
     The seismic retrofitting of existing industrial buildings is important for maintaining 
manufacturing facilities in high-seismic areas. The addition of T-shaped or portal steel 
frames to existing industrial buildings can improve the seismic performance of buildings 
while minimizing location constraints on production facilities inside the buildings (Fig. 1). 
Based on the concepts of equal-strength beams (Timoshenko, 1955) or the reduced 
beam sections (Plumier, 1990), the seismic energy dissipation capacity of reinforcing 
steel frames can be enhanced by cutting and machining a partially tapered flange of H-
shaped (wide-flange) steel members in the reinforcing frames (Fig. 2). This study aimed 
to investigate the process of designing the geometric dimensions of tapered steel 
members with improved energy-dissipation capacity in reinforcing frameworks. 

This study begins by deriving closed-form solutions for the nonlinear mechanical 
properties (i.e., load-deformation and deformation-energy dissipation relationships) of a 
tapered steel cantilever beam that is designed such that the longitudinal distributions of 
the bending stress and the bending strength coincides in the tapered zone. Numerical 
examples of partially tapered beams with equal-strength are presented to demonstrate 
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the dependence of the seismic energy dissipation performance of a tapered beam on 
the length of the tapered zone. Finally, the optimum design of the tapered beam is 
discussed based on numerical examples.  

 

        
H-shape rigid joint frame                         T-shape rigid joint frame 

Fig. 1 Example of seismic moment-resisting steel framework for retrofitting 
 

         

Fig. 2 Cantilever beam with a variable cross-section as a seismic energy dissipator 
 
2. DERIVATION OF ELASTIC-PLASTIC BEHAVIOR OF PARTIALLY-TAPERED 
CANTILEVER BEAMS 
 
2.1 Tapered Variable Cross-Section of Equal-Strength Beam 
     An equal-strength beam is defined as one with variable cross-sections that is 
designed such that the working stress may be uniform along the member length 
(Timoshenko, 1955), that is, the cross-sections are designed to facilitate the 
coincidence of the distribution of a section modulus along the member length with that 
of the acting bending moment. Consider an example of an equal-strength cantilever 
beam (Fig. 3). We assume that the x-axis is set along the member length direction, and 
its origin (x = 0) is set at the fixed-end of the cantilever. When a concentrated force P 
works at the tip (x = L) of the cantilever, the bending moment M(x) at the cross-section 

at the position x is equal to P ·(L ‒ x). 
     Next, considering the case where only the zone near the fixed-end is designed to 
have equal-strength (Fig. 3), designing the whole cantilever as having equal-strength 
would not be realistic. This is because the bending moment of the tip of the cantilever 
(x = L) is equal to zero, and thus the section modulus must be also equal to zero at the 
beam-tip. In this partially equal-strength cantilever beam, the equal-strength zone must 
exhibit a linearly tapered shape along the x-axis, according to the bending moment 
distribution along the x-axis. Let β be the ratio of the tapered zone’s length to the whole 
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length L and Zo be the constant section modulus at a non-tapered zone (βL ≤ x ≤ L). 
Based on the definition of equal-strength, to render the tapered zone (0 ≤ x ≤ βL) as 
having equal-strength, M(x) / Z(x) must be uniform for 0 ≤ x ≤ βL, where Z(x) is the 
section modulus at the position x. Consequently, M(x) / Z(x) = M(0) / Z(0) = P · L / Zo 
must hold. Thus, using the above conditions of Z(0) = Zo and M(x) = P ·(L ‒ x), the 
section modulus Z(x) in the tapered zone (0 ≤ x ≤ βL) is obtained as: 

 Z(x) = M(x) · Zo / P · L = Zo · (1 ‒ x / L)                                       (1) 

 

                       

   

Fig. 3 Cantilever partially tapered at its fixed-end and the corresponding moment-
curvature relationship 

 
2.2 Curvature and Longitudinal Strain of the Partially Tapered Cantilever Beams 
     According to the beam theory, which is based on the Bernoulli-Euler assumption 
(“plane sections remain plane”), at the cross-section at the position x, the relationship 
among the curvature φ(x), longitudinal strain of the outermost surface of the beam ε(x), 
bending moment M(x), and second moment of inertia of the cross-section I(x) is 
expressed as: 

ε(x) = h · φ(x) = h · M(x) / (E · I(x))                                            (2) 
where h and E are the half of the cross-section height (i.e., h = H / 2 where H is the 
cross-section height) and Young’s modulus of the steel material, respectively. For a 
cantilever beam, the bending moment M(x) is expressed as follows, as described in the 
previous section: 

M(x) = P ·(L ‒ x) = Mo ·(1 ‒ x / L)                                             (3) 

where Mo = M(0) = P · L. 
From the definition of the equal-strength beam shown in the previous section, in 

the tapered zone 0 ≤ x ≤ βL, Z(x) / M(x) = Z(0) / M(0) must hold. Then, (I(x) / h) / (Mo · 
(1 – x / L)) = (Io / h) / Mo holds; thus I(x) = Io · (1 – x / L) follows, where Io is the second 
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moment of inertia of the non-tapered section. This implies that I(x) varies linearly in the 

equal-strength zone. As φ(x) = M(x) / (E · I(x)), φ(x) = M(x) / (E · I(x)) = Mo · (1 ‒ x / L) / 

(E · Io · (1 ‒ x / L)) = Mo / (E · Io) ≡ constant, then ε(x) = h · φ(x) = h · Mo / (E · Io) ≡ 

constant. Therefore, in the tapered equal-strength zone 0 ≤ x ≤ βL, the outermost 
longitudinal strain ε(x) and the curvature φ(x) are uniform. This is among the greatest 
advantages of using the equal-strength beam, and this facilitates the designing of 
efficient energy-dissipating beams. 
 
2.3 Deformation of the Partially-Tapered Cantilever Beams 
     The deflection of the beam is derived by integrating the first-order moment (about 
the origin x = 0) of the curvature φ(x). In a partially tapered beam, the curvature 
function φ(x) is a piecewise-defined function (Fig. 4). In this case, we obtain an 
analytical solution via piecewise integration as follows: 

𝛿 = ∫ (𝐿 − 𝑥)𝜙(𝑥) ⅆ𝑥
𝑥𝑛

0
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(4) 

 

Fig. 4 Deflection of the cantilever beam by integrating the first-order moment of the 
curvature 

 
Distribution of the curvature 

For elastic-plastic materials such as steel, the bending moment M-curvature φ 
relationship is approximately represented by a piecewise-linear curve (Bruneau, 2011, 
for example), assuming a three-fold piecewise-linear stress-strain relationship, as 
shown in the right side of Fig. 5. This M-φ relationship curve is determined to contain 
the linear segments whose slopes are determined via the piece-wise linear curve with 

the following three vertices: (Mp, φp), (Mp, m · φp), and (s · Mp, n · φp) where Mp, φp, s, m, 

and n are the full-plastic moment for the non-tapered cross-section, elastic limit 

curvature (= Mp / (E · Io)), ratio of the ultimate bending moment to Mp, ratio of the yield-

plateau limit curvature to φp, and ratio of the ultimate curvature to φp, respectively. The 
bending moment distribution is triangular, as shown in the left side of Fig. 5. The 
curvature distribution is determined by combining the information from the two figures. 
Figure 6 shows the curvature distributions obtained using the above procedure. By 
combining the triangular bending moment distribution (i.e., the M-x curve) and the M-φ 
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curve, we obtain three types of the curvature distribution depending on the magnitude 
of the concentrated force P. In the figures, the load factor α is used as a substitute for P, 

and defined as α = P · L / Mp. When the beam is elastic, the curvature in the tapered 

zone is uniform, whereas that in the non-tapered zone varies linearly. 
 

     
 

Fig. 5 Bending moment-curvature relationship and bending moment distribution 
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Fig. 6 Variation of the curvature distribution 
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Case analysis of the curvature integration 
As shown in Fig. 6, (i) when α < 1, the cantilever beam remains elastic overall, 

and then the curvature distribution is represented by a simple linear function φ1(x) and 
a constant function φ3(x). However, for α > 1, there are two possible cases: (ii) the non-
tapered part remains elastic, and (iii) the non-tapered part partially plasticizes, and the 
curvature distribution curve to be employed is different. (ii) When the non-tapered 
portion remains elastic, the curvature part is a combination of the elastic linear function 
φ1(x) and the constant function φ3(x), while (iii) when the non-tapered portion partially 
plasticizes, the curvature part is a combination of the elastic linear function φ1(x), the 
plastic linear function φ2(x) and the constant function φ3(x). 
 The following are the equations of the beam-tip deformation δ for each case (i), (ii), 
and (iii), obtained via integrating the curvature distribution functions (detailed 
derivations are presented in the Appendix): 

 
(i) When the overall beam remains elastic, that is, 0 ≤ α ≤ 1. Thus, 

𝛿 =
1

6

𝑃𝑝𝐿3

𝐸𝐼𝑜
𝛼(2 + 3𝛽2 − 2𝛽3)                                                  (5) 

where Pp = Mp / L. 
 
(ii) When the tapered zone is plasticized and the non-tapered zone is elastic, the 

tapered zone length exceeds the plasticized beam-end zone length, that is, β · L > (1 – 

1 / α) · L, therefore β > 1 – 1 / α. The applied curvature curve equation then directly 

changes from φ1(x) to φ3(x) (not via φ2(x)) along the x-axis. Thus, 
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(iii) When the tapered zone is plasticized and the non-tapered zone is partially-
plasticized, the tapered zone length does not exceed the plasticized beam-end zone 

length, that is, β · L < (1 – 1 / α) · L; therefore β < 1 – 1 / α. The applied curvature 

equation then changes from φ1(x) to φ3(x) via φ2(x). Thus 
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3. DISCUSSIONS ON NUMERICAL EXAMPLES 
 
     In this Section, we discuss the energy-dissipation performance of a partially 
equal-strength cantilever beam using numerical examples. The example cantilever 
beam is made of H-shaped steel section H-390×300×10×16 (height, width, web 
thickness, and flange thickness, respectively in mm). The beam length is set as L = 4 m. 
The steel material is SS400, whose yield stress σy = 235 N/mm2. The main study 
parameter is the tapered zone length ratio β, which ranges as 0–0.6. 
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3.1 Nonlinear Load-Deformation Relationship of the Tapered Cantilever Beam 
     Fig. 7 shows the beam-tip load-deformation relationships, which are calculated by 
using the equations shown in the previous section. The parameters for nonlinearity of 
the steel material are assumed to be s = 1.7, m = 5, and n = 10. The load-deformation 
relationship was calculated up to the beam-tip deformation of 80 mm (= L / 50), which 
coincided with a deflection angle of 1 / 50 radian. This is because the story drift angle 
limit for building structures under strong earthquakes is considered to be between 
1/100–1/50 radian in the seismic structural design practice in Japan. 

 

Fig. 7 Beam-tip load-deformation relationships 
 
3.2 Dissipated Plastic-Strain Energy by the Tapered Cantilever Beam 
     We can derive the plastic strain energy dissipated by the tapered cantilever beam 
by using the load-deformation relationship obtained in the previous Section. The 
dissipated plastic strain energy Wp under single loading cycle of deflection angle of 1 / 
50 radian is derived as the area surrounded by the hysteretic load-deformation loop 
(Fig. 8(a)). Therefore, Wp is calculated by the following equation: 

              Wp = 2 · (1 + P1/50 / Pp) · (Pp · δ1/50 ‒ P1/50 · δp)                    

(8) 
where P1/50 and δ1/50 are the beam-tip load and deformation when the deflection angle 
reaches 1 / 50 radian, and δp is the beam-tip deformation when the bending moment at 
the beam-end reaches the full-plastic moment Mp. As evident, a simplified bi-linear 
elastic-plastic P-δ relationship, whose yield force is Pp, is assumed in this study. 
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Although an exact P-δ relationship would be complex curvilinear, this bi-linear 
approximation is valid because we focus mainly on the dissipated energy, that is, the 
area surrounded by the P-δ curve, and not on the detailed shape of the curve. Here, 
the Bauschinger effect on the cyclic behavior of metal material is not considered in this 
calculation. 

Table 1 presents the calculated Wp and Fig. 8(b) shows the relation between Wp 
and β. The results indicate that Wp slightly decreases with increase in β; this is simply 
because the volume of the flanges decreases by cutting the flanges for tapering and 
subsequently the volume of the possible plasticized zone decreases. 

 

       
 

 
(a) Load-deformation hysteretic loop under   (b) Relationship between dissipated 

the loading cycle of 1 / 50 radian            energy and tapered length ratio 

Fig. 8 Dissipated energy by the tapered cantilever of the beam-tip load-deformation 
relationships 

 

Table. 1 Dissipated plastic-strain energy Wp 
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δp 

 (mm) 
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 (kN) 
δ1/50 

 (mm) 
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 (kN) 

δ0 
 (mm) 

Wp 
(kN·mm) 

Wp(β)/Wp(0) 

0.0 34.52 125.7 80.0 139.4 41.72 22123 1.000 

0.1 35.00 125.7 80.0 133.8 42.76 22190 1.003 

0.2 36.32 125.7 80.0 129.7 42.53 21728 0.982 

0.3 38.25 125.7 80.0 128.4 40.94 20806 0.940 

0.4 40.60 125.7 80.0 127.7 38.75 19644 0.888 

0.5 43.15 125.7 80.0 127.3 36.29 18369 0.830 

0.6 45.71 125.7 80.0 127.1 33.80 17091 0.773 
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3.3 Longitudinal Strain Distribution in the Tapered Zone 
     In the process of calculating the deformation of the tapered beam, as described in 
Section 3.1, we can obtain the curvature distribution of the beam where the beam tip 
deformation reaches a specified value (i.e., L / 50). From the curvature solution, we can 
derive the maximum longitudinal strain εp at the outermost surface of the beam by 
multiplying the half-height of the beam (H / 2) by its curvature. Table 2 presents the 
calculated εp. Figure 9 shows the relationship between β and εp (the ratio n1 of the 
curvature larger than the yield-plateau limit curvature to φp is also shown in the table). 
These calculated results reveal that the maximum strain εp decreases gradually with 
increase in β. The maximum strain at the beam-end decreased by 5–10 % with flange 
tapering (β > 0); this reduces the risk of beam-end fracture. Moreover, the results also 
reveal that εp is almost constant for β ≥ 0.2; this implies that the tapered length of 0.2 L 
is sufficient for reducing the strain at the beam-end. 
 

Table. 2 Maximum longitudinal strain at the outmost surface of the beam 

β 
δ1/50 

(mm) 
P1/50 

(kN) 
α1/50 

(= P1/50 / Pp) 
n1 

φ1/50 
(= n1·φp) 

εp 
(=φ1/50·H/2) 

εp(β)/εp(0) 

0.0 80.0 139.4 1.109 5.778 3.74E-05 0.00729 1.00 

0.1 80.0 133.8 1.064 5.457 3.53E-05 0.00689 0.95 

0.2 80.0 129.7 1.032 5.227 3.38E-05 0.00660 0.91 

0.3 80.0 128.4 1.021 5.152 3.33E-05 0.00650 0.89 

0.4 80.0 127.7 1.016 5.115 3.31E-05 0.00646 0.89 

0.5 80.0 127.3 1.013 5.092 3.30E-05 0.00643 0.88 

0.6 80.0 127.1 1.011 5.077 3.29E-05 0.00641 0.88 

 

 
 

Fig. 9 Relationship between β and εp 
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3.4 Low-Cycle Fatigue Life Estimation 
     Let us demonstrate the effect of strain reduction by tapering from another 
perspective. If the ultimate state of the partially tapered beam is dominated by low-cycle 
fatigue, the low-cycle fatigue life is an appropriate index for evaluating the ultimate 
performance of the partially tapered beam. Here we assume a well-known Coffin-
Manson rule for the relationship between a plastic strain amplitude Δεp and a low-cycle 
fatigue life (number of loading cycles) Nf estimation, as follows: 

                                 Δ𝜀𝑝 ∙ 𝑁𝑓
𝑘 = 𝐶                                 

                                                   (9) 
where C and k are material constants. 
     Table 3 presents the estimated low-cycle fatigue life Nf for the tapered length ratio 
β and corresponding longitudinal strain εp. For the material constants, k = 0.5 and C = 

1.0 · εf where εf = 0.4 (fracture strain) are assumed here. Figure 10 shows the 

relationship between β and Nf. The results show that the fatigue life Nf increases by 10–
30% with flange tapering with increase in β, and Nf is approximately constant for β ≥ 0.2. 
 

Table. 3 Estimated low-cycle fatigue life by Coffin-Manson rule 

β εp Δεp (= 2εp) Nf  / C1/k 
Nf 

(cycles) 
Nf(β) / Nf(0) 

0.0 0.00729 0.0146 4701 423 1.00 

0.1 0.00689 0.0138 5270 474 1.12 

0.2 0.00660 0.0132 5744 517 1.22 

0.3 0.00650 0.0130 5912 532 1.26 

0.4 0.00646 0.0129 5999 540 1.28 

0.5 0.00643 0.0129 6053 545 1.29 

0.6 0.00641 0.0128 6089 548 1.30 

 

 

Fig. 10 Relationship between β and Nf 
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3.5 Discussions on Optimal Tapered Zone Length 
     Finally, we discuss the optimal tapered zone length ratio β for designing the 
partially equal-strength cantilever beam. Combining the results in the previous Sections 
3.2 and 3.4, we can define a concept of plastic strain energy dissipation capacity in a 
low-cycle fatigue life, that is, the product of the dissipated energy per cycle and the 
number of cycles for low-cycle fatigue life, Nf · Wp. This quantity can be regarded as the 
total dissipated energy during cyclic loading at a constant deformation amplitude of the 
deformation angle of 1 / 50 radian until the occurrence of a ductile fracture. Table 4 
shows the calculated Nf · Wp values, and Fig. 11 shows the relationship between β and 
Nf · Wp. From these results, the total energy dissipation capacity Nf · Wp is maximized 
when β = 0.2. Further, Nf · Wp increases by 20% when tapering with β = 0.2. 
     The above discussion indicated that partial tapering of the beam flanges can 
enhance the total energy dissipation capacity of the cantilever beam. Further, the 
existence of an optimal length of the tapered zone is confirmed. The numerical 
examples indicated that the optimal tapered zone length ratio β is 0.2. This finding is 
quite useful for the optimal design of a cantilever beam as an energy-dissipator. 
However, the discussion in this Section is based on limited numerical examples with 
the approximated M-φ and P-δ relations; thus, is not very well generalized. 
 

Table. 4 Plastic-strain energy dissipation capacity in low-cycle fatigue life 

β Nf (cycles) Wp (kN·mm) Nf ·Wp (kN·mm) Nf·Wp(β) / Nf·Wp(0) 

0.0 423 22123 9.36E+06 1.00 

0.1 474 22190 1.05E+07 1.12 

0.2 517 21728 1.12E+07 1.20 

0.3 532 20806 1.11E+07 1.18 

0.4 540 19644 1.06E+07 1.13 

0.5 545 18369 1.00E+07 1.07 

0.6 548 17091 9.37E+06 1.00 

 

 
 

Fig. 11 Relationship between β and Nf · Wp 
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4. CONCLUSIONS 
 

This study proposed a partially tapered (i.e., partial equal-strength) cantilever 
beam for seismic energy dissipation. The tapered zone, which is cut and machined to 
equal-strength, was subjected a uniform bending strain, whereas the non-tapered (i.e., 
with uniform section) zone of the beam experienced a linearly varying bending strain 
proportional to the bending stress. This implies that the plastic strain energy was not 
dissipated locally, exhibiting a large plastic strain; rather, it was averaged and 
smoothed out within the tapered zone. 

The parameter studies on the tapered length ratio β of the tapered beam 
members revealed that there was an optimum β that maximized the total energy 
dissipation capacity in low-cycle fatigue life. This study showed that tapered beam 
members based on the concept of an equal-strength beam are effective as seismic 
energy dissipators for seismic retrofitting purposes. Presenting more specific design 
procedures for seismic retrofitting moment resisting frames with tapered section 
members for industrial buildings will be the subject of future research. 
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APPENDIX. 
 
Solutions of the Beam Deformation under Different Load Levels and the Tapered 
Length 
(i) When the overall beam remains elastic: 

𝛿 = ∫ (𝐿 − 𝑥)𝜙(𝑥) ⅆ𝑥
𝐿

0

= ∫ (𝐿 − 𝑥)𝜙3 ⅆ𝑥
𝛽𝐿

0

+ ∫ (𝐿 − 𝑥)𝜙1 ⅆ𝑥
𝐿

𝛽𝐿

 

= ∫ (𝐿 − 𝑥)𝛼𝜙𝑝 ⅆ𝑥
𝛽𝐿

0

+ ∫ (𝐿 − 𝑥)𝛼𝜙𝑝 (1 −
𝑥

𝐿
) ⅆ𝑥

𝐿

𝛽𝐿

 

= 𝛼𝜙𝑝 [𝐿𝑥 −
1

2
𝑥2]

0

𝛽𝐿

+
𝛼𝜙𝑝

𝐿
[𝐿2𝑥 − 𝐿𝑥2 +

1

3
𝑥3]

𝛽𝐿

𝐿

 

= 𝛼𝜙𝑝𝐿2(
1

3
+

1

2
𝛽2−

1

3
𝛽3) =

1

6
𝛼𝜙𝑝𝐿2(2 + 3𝛽2−2𝛽3)  

=
1

6

𝑃𝑝𝐿3

𝐸𝐼𝑜
𝛼(2 + 3𝛽2 − 2𝛽3) 



The 2023 World Congress on 
Advances in Structural Engineering and Mechanics (ASEM23)
GECE, Seoul, Korea, August 16-18, 2023

  

  

                                                                         (10) 

where 𝜙𝑝=
𝑃𝑝𝐿 

𝐸𝐼𝑜
 . 

 
(ii) When the tapered zone is plasticized and the non-tapered zone is elastic: 

𝛿 = ∫ (𝐿 − 𝑥)𝜙(𝑥) ⅆ𝑥
𝐿

0

= ∫ (𝐿 − 𝑥)𝜙3 ⅆ𝑥
𝛽𝐿

0

+ ∫ (𝐿 − 𝑥)𝜙1 ⅆ𝑥
𝐿

𝛽𝐿

= ∫ (𝐿 − 𝑥)𝑛1𝜙𝑝 ⅆ𝑥
𝛽𝐿

0

+ ∫ (𝐿 − 𝑥) (1 −
𝑥

𝐿
) 𝛼𝜙𝑝 ⅆ𝑥

𝐿

𝛽𝐿

= 𝑛1𝜙𝑝𝐿2𝛽 (1 −
𝛽

2
) +

1

3𝛼2
𝜙𝑝𝐿2

= 𝜙𝑝𝐿2 [𝛽 (1 −
𝛽

2
) {

𝑛 − 𝑚

𝑠 − 1
𝛼 +

𝑠𝑚 − 𝑛

𝑠 − 1
} +

1

3𝛼2
]

=
𝑃𝑝𝐿3

𝐸𝐼𝑜
[𝛽 (1 −

𝛽

2
) {

𝑛 − 𝑚

𝑠 − 1
(𝛼 − 1) + 𝑚} +

1

3𝛼2
] 

(11) 
where n1= (α – 1) / (s – 1) · (n – m) + m. 

 
(iii) When the tapered zone is plasticized and the non-tapered zone is partially 
plasticized: 

𝛿 = ∫ (𝐿 − 𝑥)𝜙(𝑥) ⅆ𝑥
𝐿

0

= ∫ (𝐿 − 𝑥)𝜙3 ⅆ𝑥
𝛽𝐿

0

+ ∫ (𝐿 − 𝑥)𝜙2 ⅆ𝑥
𝑥1

𝛽𝐿

+ ∫ (𝐿 − 𝑥)𝜙1 ⅆ𝑥
𝐿

𝑥1

 

= ∫ (𝐿 − 𝑥)𝑛1𝜙𝑝 ⅆ𝑥
𝛽𝐿

0

+ ∫
(𝐿 − 𝑥)𝜙𝑝

(1 −
1
𝛼)

{(𝑚 − 𝑛1)𝑥 − 𝑛1 (1 −
1

𝛼
) 𝐿} ⅆ𝑥

𝑥1

𝛽𝐿

+ ∫ (𝐿 − 𝑥) (1 −
𝑥

𝐿
) 𝛼𝜙𝑝 ⅆ𝑥

𝐿

𝑥1

 

= 𝜙𝑝𝐿2𝛽 (1 −
𝛽

2
) 𝑛1

+ 𝜙𝑝𝐿2 (1 −
1

𝛼
− 𝛽) [

1

3

𝑛1 − 𝑚

1 −
1
𝛼

{(1 −
1

𝛼
)

2

+ (1 −
1

𝛼
) 𝛽 + 𝛽2}

−
1

2
(1 −

1

𝛼
+ 𝛽)

𝑛1 − 𝑚

1 −
1
𝛼 + 𝑛1

+ 𝑛1] +
1

3𝛼2
𝜙𝑝𝐿2 
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= 𝜙𝑝𝐿2 [𝛽 (1 −
𝛽

2
) 𝑛1

+ (1 −
1

𝛼
− 𝛽) [

1

3

𝑛1 − 𝑚

1 −
1
𝛼

{(1 −
1

𝛼
)

2

+ (1 −
1

𝛼
) 𝛽 + 𝛽2}

−
1

2
(1 −

1

𝛼
+ 𝛽)

𝑛1 − 𝑚

1 −
1
𝛼 + 𝑛1

+ 𝑛1] +
1

3𝛼2
] 

= 𝜙𝑝𝐿2 [𝛽 (1 −
𝛽

2
) {

𝑛 − 𝑚

𝑠 − 1
(𝛼 − 1) + 𝑚}

+ (1 −
1

𝛼
− 𝛽) [

1

3

{
𝑛 − 𝑚
𝑠 − 1 (𝛼 − 1) + 𝑚} − 𝑚

1 −
1
𝛼

{(1 −
1

𝛼
)

2

+ (1 −
1

𝛼
) 𝛽 + 𝛽2}

−
1

2
(1 −

1

𝛼
+ 𝛽)

{
𝑛 − 𝑚
𝑠 − 1 (𝛼 − 1) + 𝑚} − 𝑚

1 −
1
𝛼 + {

𝑛 − 𝑚
𝑠 − 1 (𝛼 − 1) + 𝑚}

+ {
𝑛 − 𝑚

𝑠 − 1
(𝛼 − 1) + 𝑚}]

+
1

3𝛼2
] 

=
𝑃𝑝𝐿3

𝐸𝐼𝑜
[𝛽 (1 −

𝛽

2
) {

𝑛 − 𝑚

𝑠 − 1
(𝛼 − 1) + 𝑚}

+ (1 −
1

𝛼
− 𝛽) [

1

3

𝑛 − 𝑚

𝑠 − 1
𝛼 {(1 −

1

𝛼
)

2

+ (1 −
1

𝛼
)𝛽 + 𝛽2}

−
1

2
(1 −

1

𝛼
+ 𝛽) {

𝑛 − 𝑚

𝑠 − 1
(2𝛼 − 1) + 𝑚} +

𝑛 − 𝑚

𝑠 − 1
(𝛼 − 1) + 𝑚] +

1

3𝛼2
] 

(12)

where x1= (1 – 1 / α) · L. 

 


